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Born–Infeld Action on Discrete Spaces
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We apply Connes’ noncommutative geometry to a finiten-point space. The explicit
Born-Infeld actions on thisn-point space andn copies of a manifold are obtained.
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1. INTRODUCTION

In recent years, the continuum Born–Infeld theory (Born and Infeld, 1934) in
its commutative and noncommutative settings has become relevant in the descrip-
tion of D-brain dynamics (see, for example, Seiberg and Witten, 1999; Tseytlin,
2000). The Born–Infeld actions on finite group spaces was constructed in Aschieri
et al. (2003).

In this paper, we apply Connes’ noncommutative geometry (Connes, 1985,
1994) to a finiten-point space. By explicit Born–Infeld actions on thisn-point
space,n copies of a manifold are obtained.

2. DIFFERENTIAL CALCULUS ON n-POINT SPACE

We briefly review the differential calculus on an-point space. More de-
tailed account of the construction can be found in Cammarata and Coquereaux
(1995), Dimakis and M¨uller-Hoissen (1994a,b), and Hu and Sant’Anna (2002,
2003).

Let M be a space ofn pointsi1, . . . , i n(n < ∞), andA the algebra of complex
functions onM with ( f g)(i ) = f (i )g(i ). Let pi ∈ A defined by

pi ( j ) = δi j . (1)

1 Department of Mathematics, Federal University of Paran´a, C.P. 019081, Curitiba, PR, 81531-990,
Brazil.

2 Dongbei University of Finance and Economics, Dalian 116025, People’s Republic of China.
3 To whom correspondence should be addressed at Department of Mathematics, Federal University of
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It follows that pi is a projector inA(i = 1, . . . , n). Each f ∈ A can be written as

f =
∑

i

f (i )pi ,

where f (i ) ∈ C, a complex number. The algebraA can be extended to a universal
differential algebraÄ(A) = ⊕∞r=0Är (A) (whereÄ0(A) = A) via the action of a
linear operatord : Är (A)→ Är+1(A) satifying

d1= 0, d2 = 0, d(ωrω
′) = (dωr )ω

′ + (−1)rωr dω
′,

whereωr ∈ Är (A). 1 is the unit inÄ(A).
Let ε = Am be a freeA-module. A connection onε is a linear map∇ : E →

E ⊗A Ä1(A) such that

∇(ψa) = (∇ψ)a + ψ ⊗ da, (2)

for all ψ ∈ E , a ∈ A.
Any connection onE is of the form∇ = d + A with A∗ = −A. A is called

a connection 1-form. We can regardA as an element ofMm(A)⊗A Ä1(A). Here
Mm(A) is am×mmatrix algebra overA. A can be written asA =∑i , j Ai j pi dpj

with Ai j ∈ Mm (C), am×m complex matrix, andAii = 0, am×m zero matrix.
From A∗ = −A, we have

A∗i j = Aji . (3)

Let G ⊂ EndA(ε) = Mm(A) be a gauge group ofε. ThenG =∑i Gi pi with Gi ⊂
Mm(C). Notice that

G1 = G2 = · · · = Gn = G. (4)

The connection 1-formA satisfies

A′ = g Ag−1+ g dg−1. (5)

Hereg =∑i gi pi ∈ G, andgi ∈ Gi = G.
The curvature of∇ reads

2 = d A+ A2. (6)

2 transforms in the usual way,2′ = g2g−1. One has2∗ = 2.
2 satisfies the Bianchi identity:

d2+ A2−2A = 0.

3. FROM FREDHOLM MODULE TO BORN–INFELD ACTION ON M

One of the basic ideas in Connes’ noncommutative geometry is the Fredholm
module (Connes, 1994, and references therein). Applying the Fredholm module
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to the universal algebraÄ(A) discussed in the previous section, one can obtain a
more useful graded differential algebra on the finite spaceM .

The Fredholm module (A,H, D) is composed as the following (Hu, 2000;
Hu and Sant’Anna, 2002, 2003):A is the algebra onM defined in the previous
section.H is an-dimensional linear space over the complex fieldC. The action of
A onH is given by

π ( f ) =


f (1) 0 · · · 0
0 f (2) · · · 0
· · · · · · · · · · · ·
0 0 · · · f (n)


with f ∈ A. D is a Hermitiann× nmatrix withDi j = D ji . The following equality
defines an involutive representation ofÄ(A) inH,

π (da) = [D, π (a)], (7)

wherea ∈ A. To ensure the differentiald satisfies

d2 = 0, (8)

one has to impose the following condition onD,

D2 = µ2I , (9)

whereµ is a real constant andI is then× n identity matrix. Since the diagonal
elements ofD commute exactly with the action ofA, we can ignore the diagonal
elements ofD, i.e.,

Dii = 0. (10)

The projectorpi can be expressed as an× n matrix,

(π (pi ))αβ = δαi δβi . (11)

From Eq. (7) and (11), it follows that

(π (pi dpj ))αβ = δαi δβ j Di j . (12)

The connection matrix H on M is given by

Hi j = Di j (Ai j + 1). (13)

Here1 is the identity in the gauge groupG, whereG is defind in Eq. (4). One
can find thatHi j is a m×m complex matrix withH∗i j = Hji . This means that
H = (Hi j ) is an× n Hermitian matrix with its elementsm×m submatrices. The
diagonal elements ofH satisfy

Hii = 0. (14)
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From (5) and (13), the transformation rule ofHi j reads

H ′i j = gi Hi j g
−1
j . (15)

From (6), the curvature matrixπ (2) reads

π (2) = H2− µ2I , (16)

whereI = (Ii j ) = (δi j 1). The transformation rule ofπ (2i j ) satisfies

π (2′i j ) = giπ (2i j )g
−1
j . (17)

We recall the continuump-dimensional Born–Infeld action for nonlinear
electrodynamics (Born and Infeld, 1934) in flat space is

S=
∫

V p

dpx
√

det(δµν + Fµν), (18)

whereF is the field strength. The action (18) can be generalized to the non-Abelian
case. Then the determinant in (18) is not a number. We can define its absolute
value| det| as the positive square root in

√
det det†. The generalized Born–Infeld

action is

S=
∫

V p

dpxTr
√| det(δµν + Fµν)|. (19)

The trace can be symmetrized (Tseytlin, 2000, and references therein).
Now we construct the non-Abelian Born–Infeld action on the finiten-point

spaceM . The analogue ofδµν + Fµν becomes

Ti j = 1δi j + π (2i j ) = (1− µ2)1δi j + (H2)i j , (20)

and transforms under the gauge transformation in the same way asπ (2i j ):

T ′i j = gi Ti j gj . (21)

The determinant ofT is unchanged under the gauge transformation:

detT ′ = detT. (22)

Therefore, the non-Abelian Born–Infeld action onM reads

S= Tr
√| det(Ti j )|

= Tr
√
| det((1− µ2)1δi j + (H2)i j )| (23)

Example 1. Whenµ2 = 1, S= Tr| det(Hi j )|.
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Example 2. TheU (1) Born–Infeld action onM reads

S= √| det(Ti j )|

=
√
| det((1− µ2)δi j + (H2)i j )| (24)

Whenµ2 = 1, S= |det(Hi j )|. HereHi j is a complex number.

4. BORN–INFELD ACTION ON n COPIES OF A MANIFOLD

Let V be an oriented and connected smooth manifold andM , as the previous
sections, an-point space. We see thatV × M is a disconnected manifold consisting
of n copies ofV .

We briefly review the gauge theory onn copies ofV (Hu and Sant’Anna,
2002, 2003). Denote the differential onM by df , i.e., the differentiald in previous
sections is replaced bydf . Let ds be the usual differential onV , andd the total
differential onV × M . It follows that

d = ds + df . (25)

The nilpotency ofd requires that

dsdf = −df ds. (26)

The connectionAhas a usual differential degree and a finite-difference degree
(α, β) adding up to 1:

A(1,0)=
∑

i

Ai pi . (27)

It is the continuous part ofA. Ai is a Lie algebra valued 1-form onVi andA∗i = −Ai .

A(0,1)=
∑
i , j

Ai j pi d f pj . (28)

It is the connection 1-form onM , and is well studied in the previous section.
We see that the curvatureπ (2) has a usual differential degree and a finite-

difference degree (α, β) adding up to 2:

2
(2,0)
i j = Fi δi j , (29)

HereFi is the curvature ofAi , Fi = dsAi + Ai ∧ Ai .
2

(2,0)
i i obeys the transformation rule,

2
′(2,0)
i i = gi2

(2,0)
i i g−1

i ,

wheregi ∈ Gi , andGi is the gauge group onVi . Let G be the gauge group onV ,
thenG = G1 = . . . = Gn.2(2,0) is the continuous part of the field strength.
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Next, we look at the component2(1,1) of bi-degree (1,1):

2
(1,1)
i j = dsHi j + Ai Hi j − Hi j Aj . (30)

One can find that2(1,1)
i j transforms as the following:

2
′(1,1)
i j = gi2

(1,1)
i j g−1

j .

2(1,1) corresponds to the interaction betweenV andM .
We can define a covariant derivative ofHi j as

DµHi j = ∂µHi j + AiµHi j − Hi j Ajµ. (31)

Therefore2(1,1)
i j = DµHi j dxµ. Here the Einstein sum convention for the indice

µ is adopted.
Finally, we have the component2(0,2) of degree (0,2):

2(0,2)= H2− µ2I , (32)

with

2
′(0,2)
i j = gi2

(0,2)
i j g−1

j .

2
(0,2)
i j corresponds to the field strength on the finite spaceM .

Now we construct the Born–Infeld action on then copies ofV . The curvature
π (2) can be formally written as

π (2) =
(
2(2,0) 2(1,1)

2(1,1) 2(0,2)

)
(33)

Using a trick in Aschieriet al., (2003), we consider the algebraic identity(
A B

C D

)
=
(

1 B D−1

0 1

)(
A− B D−1C 0

0 D

)(
1 0

D−1C 1

)
This implies

det

(
A B

C D

)
= [det(A− B D−1C)][det D] (34)

Let

Kµν = [ A− B(D−1)C]µν

= gµν


1 0 · · · 0

0 1 · · · 0

· · · · · · · · · · · ·
0 0 · · · 1


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+


F1µν 0 · · · 0

0 F2µν · · · 0

· · · · · · · · · · · ·
0 0 · · · Fnµν

− DµHT−1DνH, (35)

where gµν is the metric on the manifoldV , and T = (Ti j ) is defined in (20).
Notice that all the matrices in (35) have n rows andn columns with their elements
m×m submatrices. One can find that det(Kµν) is unchanged under the gauge
transformation:

det(K ′µν) = det(Kµν). (36)

Hence, the Born–Infeld action onV × M reads

S=
∫

V p

dpxTr
√| det(Kµν) det(Ti j )|. (37)
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