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Born—Infeld Action on Discrete Spaces

Liangzhong Hu,%® Liangyou Hu,? and Adonai S. Sant'Anna

We apply Connes’ noncommutative geometry to a fimipoint space. The explicit
Born-Infeld actions on thia-point space and copies of a manifold are obtained.
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1. INTRODUCTION

In recent years, the continuum Born—Infeld theory (Born and Infeld, 1934) in
its commutative and noncommutative settings has become relevant in the descrip-
tion of D-brain dynamics (see, for example, Seiberg and Witten, 1999; Tseytlin,
2000). The Born—Infeld actions on finite group spaces was constructed in Aschieri
et al. (2003).

In this paper, we apply Connes’ noncommutative geometry (Connes, 1985,
1994) to a finiten-point space. By explicit Born—Infeld actions on thispoint
spacen copies of a manifold are obtained.

2. DIFFERENTIAL CALCULUS ON n-POINT SPACE

We briefly review the differential calculus onrapoint space. More de-
tailed account of the construction can be found in Cammarata and Coquereaux
(1995), Dimakis and Miler-Hoissen (1994a,b), and Hu and Sant’Anna (2002,

2003).
Let M be aspace afpointsiy, ..., in(n < 00), andA the algebra of complex
functions onM with (fg)(i) = f(i)g(i). Let p; € A defined by

pi(J) = éij. )
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It follows that p; is a projector ind(i = 1, ..., n). Eachf € .4 can be written as
f=> fi)p,
i

wheref (i) € C, a complex number. The algehtacan be extended to a universal
differential algebra2(A) = &>, (A) (WhereQ°(A) = A) via the action of a
linear operatod : Q' (A) — Q+1(A) satifying

d1=0,d? =0,d(w ') = (dwy )’ + (—1) & do’,

wherew, € Q" (A). 1 is the unit inQ(A).
Lets = A™ be a freed-module. A connection onis a linear mapv : £ —
€ ® 4 Q1(A) such that

V(¥a) = (V¥)a+ ¢ @ da, )

forally € £,ae A.

Any connection orf is of the formV = d + A with A* = —A. Aiis called
a connection 1-form. We can regafdas an element dfl,(A) ® 4 Q*(A). Here
Mm(A) isam x mmatrix algebra oved. A can be written ag\ = Zi]j Ajj pi dp;
with Ajj € My, (C), am x m complex matrix, andy; = 0, am x m zero matrix.
From A* = — A, we have

Aj = Aji. 3)

Let G C End4(e) = Mm(.A) be a gauge group af ThenG = ) ; G pi with G; C
Mm(C). Notice that

Gi=Gy=---=0Gp=G. 4)
The connection 1-fornA satisfies
A =gAg'+gdg™ (5)

Hereg=)", 0 p € G, andg € G = G.
The curvature oV reads

O =dA+ A% (6)

® transforms in the usual wag)’ = g©g~. One ha®* = .
O satisfies the Bianchi identity:

de + A® —OA=0.

3. FROM FREDHOLM MODULE TO BORN—-INFELD ACTIONON M

One of the basic ideas in Connes’ noncommutative geometry is the Fredholm
module (Connes, 1994, and references therein). Applying the Fredholm module
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to the universal algebr@(.4) discussed in the previous section, one can obtain a
more useful graded differential algebra on the finite spdce

The Fredholm moduleA, H, D) is composed as the following (Hu, 2000;
Hu and Sant’Anna, 2002, 2003} is the algebra oM defined in the previous
sectionH is an-dimensional linear space over the complex fildrhe action of
A on¥H is given by

fo) 0 --- O
nn=|% @0
0 0 .- f(n)

with f € A. DisaHermitiam x nmatrixwithD;; = Bji . The following equality
defines an involutive representations@f.A) in H,

n(da) =[D, 7 (a)], 7
wherea € A. To ensure the differentia satisfies
d?=0, (8)
one has to impose the following condition @n
D? = 12, (9)

wherep is a real constant andis then x n identity matrix. Since the diagonal
elements oD commute exactly with the action of, we can ignore the diagonal
elements oD, i.e.,

Dii = 0. (10)
The projectorp; can be expressed asiax h matrix,
(m(Pi))ap = Saidpi- (11)
From Eq. (7) and (11), it follows that
(7w (pi dpj))ap = Saidpj Dij - (12)
The connection matrix H on M is given by
Hij = Dij (Aj +1). (13)

Here 1 is the identity in the gauge group, whereG is defind in Eq. (4). One
can find thatH;; is am x m complex matrix withH; = Hj;. This means that
H = (H;;) is an x n Hermitian matrix with its elements x m submatrices. The
diagonal elements dfl satisfy

Hii = 0. (14)
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From (5) and (13), the transformation ruleldf; reads
Hi = giHijg; (15)
From (6), the curvature matrix(®) reads
7(®) = H? — 12, (16)
wherel = (l;;) = (8i; 1). The transformation rule of (®;;) satisfies
7(©])) = gim(©)g; . a7

We recall the continuunp-dimensional Born—Infeld action for nonlinear
electrodynamics (Born and Infeld, 1934) in flat space is

S— f dPx./det6,, + Fou), (18)
VP

whereF is the field strength. The action (18) can be generalized to the non-Abelian
case. Then the determinant in (18) is not a number. We can define its absolute

value| det| as the positive square rootindet det. The generalized Born-Infeld
action is

S= / dPxTr/[det@,, + Fu)l. (19)
VP

The trace can be symmetrized (Tseytlin, 2000, and references therein).
Now we construct the non-Abelian Born—Infeld action on the fin{goint
spaceM. The analogue of,, + F,, becomes

Tij = 18ij +7(©)) = (1 — )18 + (H?);, (20)
and transforms under the gauge transformation in the same weEas):
T =0 Tijg;- (21)
The determinant of is unchanged under the gauge transformation:
detT’ = detT. (22)
Therefore, the non-Abelian Born-Infeld action Bhreads
S = Try/[det(T, )]

= Tr,/Idet(1— 12)18; + (H2)))| (23)

Example 1. Whenu? = 1, S= Tr| det(H;j)|.
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Example 2. TheU (1) Born—Infeld action orM reads

S= /| det(Tij)|
= \/| det((1— u2)sij + (H2)ij)I (24)

Whenp? = 1, S= | det(H;;)|. HereH;; is a complex number.

4. BORN-INFELD ACTION ON n COPIES OF A MANIFOLD

LetV be an oriented and connected smooth manifoldinds the previous
sections, a-point space. We see thdtx M is a disconnected manifold consisting
of n copies ofV.

We briefly review the gauge theory ancopies ofV (Hu and Sant'/Anna,
2002, 2003). Denote the differential dh by d¢, i.e., the differentiadl in previous
sections is replaced ly;. Let ds be the usual differential o, andd the total
differential onV x M. It follows that

The nilpotency ofd requires that
dsds = —d¢ds. (26)

The connectior has a usual differential degree and a finite-difference degree
(o, B) adding up to 1:

A9 =% Ap. (27)
i
Itis the continuous part ok. A; is a Lie algebravalued 1-form af andA" = —A;.
ACD =" A pdip;. (28)
i
It is the connection 1-form oM, and is well studied in the previous section.

We see that the curvaturg(®) has a usual differential degree and a finite-
difference degreex( 8) adding up to 2:

®i(12'0) = Fidjj, (29)

HereF; is the curvature ofz, F = dsA + A A A
0?9 obeys the transformation rule,

12,0 2,0)—
®ii( ):gi®i(i )gi g

whereg; € Gj, andG; is the gauge group o¥;. Let G be the gauge group 0w,
thenG = G, = ... = G,. ©?9 s the continuous part of the field strength.
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Next, we look at the componet™®:?) of bi-degree (1,1):
@i(jl'l)stHij +A5Hij — HijAj. (30)
One can find tha®{;"* transforms as the following:

O/(l n_ g O(1 1)gJ .

®@:Y corresponds to the interaction betweéémndM.
We can define a covariant derivativeldf; as

D, Hij = 3, Hij + A Hij — Hij Aj.. (31)
Thereforeo(l Y= D, H;; dx*. Here the Einstein sum convention for the indice
nis adopted
Finally, we have the compone®®? of degree (0,2):
002 =H2 A, (32)
with

®/(0 2 _ g ®(o 2)9J ‘

@i(?‘z) corresponds to the field strength on the finite spdce
Now we construct the Born—Infeld action on theopies ofV. The curvature
(®) can be formally written as

®20 @1
(@) = oD ©0.2) (33)
Using a trick in Aschierkt al.,, (2003), we consider the algebraic identity
A B) (1 BD! A—-BD!C 0 1 0
cDb) \o 1 0 D/\DC 1
This implies
A B )
det c D = [det(A — BD™-C)][det D] (34)

Let
= [A~B(D)Clu

1 0 -.- 0
0 1

o

= O



Born—Infeld Action on Discrete Spaces 321

Fiw O - 0
0 Fppy -+ O

+ 2 — D,HT'D,H, (35)
0 0 - Fou

whereg,, is the metric on the manifol®/, and T = (T;;) is defined in (20).
Notice that all the matrices in (35) have n rows antblumns with their elements
m x m submatrices. One can find that d€f() is unchanged under the gauge
transformation:

det(K},) = det(K,.,). (36)
Hence, the Born—Infeld action ovi x M reads
S= / dprr\/| det(K,.,) det(Ti;)|. (37)
\VA:
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